13.1 Vector Fields

13.1.1 An Introduction to Vector Fields

Definition

Let D be a set in \mathbb{R}^{n}. A scalar field on \mathbb{R}^{n} (or scalar function) is a function f that assigns to each point $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in D$ a scalar $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}$. That is, a scalar field is a function $f: D \rightarrow \mathbb{R}$ by $\left(x_{1}, \ldots, x_{n}\right) \mapsto f\left(x_{1}, \ldots, x_{n}\right)$.

Some examples of scalar fields would be

- $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$.
- $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $g(x, y)=x^{2}-y^{3}$.
- $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $h(x, y, z)=x y z+1$.
- $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$, where $T(x, y, z)$ is the temperature in degrees Fahrenheit at every point in the room you are in.

Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=x^{2}-y^{3}$. Then f is a scalar field on \mathbb{R}^{2}.

Figure 1: A Scalar Field
https://www.geogebra.org/calculator/eqcenshr

We introduce a scalar field to differentiate it from a vector field.

Definition

Let D be a set in \mathbb{R}^{2}. A vector field on \mathbb{R}^{2} is a function \mathbf{F} that assigns to each point $(x, y) \in D$ a two-dimensional vector $\mathbf{F}(x, y)$. That is, a vector field is a function $\mathbf{F}: D \rightarrow \mathbb{R}^{2}$ by $(x, y) \mapsto \mathbf{F}(x, y)$.
If $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=\langle P(x, y), Q(x, y)\rangle$, then the scalar functions P and Q are called component functions for \mathbf{F}.

Definition

Let $E \in \mathbb{R}^{3}$. A vector field on \mathbb{R}^{3} is a function $\mathbf{F}: E \rightarrow \mathbb{R}^{3}$ by $(x, y, z) \mapsto \mathbf{F}(x, y, z)$.

Convention

If \mathbf{F} is a vector field on \mathbb{R}^{3} with component functions P, Q, R, then we may write either

$$
\begin{aligned}
\mathbf{F}(x, y, z) & =P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k} \\
\mathbf{F}(\mathbf{x}) & =P(\mathbf{x}) \mathbf{i}+Q(\mathbf{x}) \mathbf{j}+R(\mathbf{x}) \mathbf{k} \\
\mathbf{F} & =P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}
\end{aligned}
$$

where \mathbf{x} is understood to be the position vector for (x, y, z).
Suppose $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $\mathbf{F}(x, y)=P \mathbf{i}+Q \mathbf{j}$ by $P(x, y)=\ln |x|-\cos x$ and $Q(x, y)=$ $\sqrt{|y|}-y \sin y$. Then \mathbf{F} is a vector field on \mathbb{R}^{2}.

Figure 2: A Vector Field
https://www.geogebra.org/calculator/tswxsams

Example 1. Let $\mathbf{F}(x, y)=(x+y) \mathbf{i}+(x-y) \mathbf{j}$ be a vector field on \mathbb{R}^{2}. Describe \mathbf{F} by sketching several vectors $\mathbf{F}(x, y)$ on $[-2,2] \times[-2,2]$.

Technology: For nice examples of vector field visualizations, check out these applets:

- Vector Fields on \mathbb{R}^{2} : https://www.geogebra.org/m/QPE4PaDZ
- Vector Fields on \mathbb{R}^{3} : https://www.geogebra.org/m/u3xregNW

13.1.2 Conservative Vector Fields

Definition

If f is a scalar function on \mathbb{R}^{2} or \mathbb{R}^{3}, then the gradient ∇f is actually a vector field. That is,

$$
\begin{aligned}
\nabla f(x, y) & =f_{x}(x, y) \mathbf{i}+f_{y}(x, y) \mathbf{j}=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \\
\nabla f(x, y, z) & =f_{x}(x, y, z) \mathbf{i}+f_{y}(x, y, z) \mathbf{j}+f_{z}(x, y, z) \mathbf{k}=\left\langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right\rangle \\
\nabla f & =f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k}=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
\end{aligned}
$$

and ∇f is called a gradient vector field.

Example 2. Sketch the gradient vector field of $f(x, y)=\sqrt{x^{2}+y^{2}}$.

Definition

A vector field \mathbf{F} is called a conservative vector field if it is the gradient vector field of some scalar function. That is, \mathbf{F} is conservative if there exists some f such that $\mathbf{F}=\nabla f$. In this case, we call f a potential function for \mathbf{F}.

Note: Note the parallelism.

- F is integrable iff there exists f such that $f^{\prime}=F$.
- \mathbf{F} is a conservative vector field iff there exists f such that $f^{\prime}=\mathbf{F}$.
- f is an antiderivative of F iff $f^{\prime}=F$.
- f is a potential function for \mathbf{F} iff $\nabla f=\mathbf{F}$.

