12.8 Triple Integrals in Cylindrical & Spherical Coordinates

12.8.1 Triple Integrals in Cylindrical Coordinates

Recall Cylindrical Coordinates: https://www.geogebra.org/3d/yesa2uja

$\mathbf{Cylindrical} \rightarrow \mathbf{Rectangular}$	$\mathbf{Rectangular} \to \mathbf{Cylindrical}$
$x = r\cos\theta$	$r^2 = x^2 + y^2$
$y = r\sin\theta$	$\tan\theta = \frac{y}{x}$
z = z	z = z

Theorem

Suppose $\mathcal W$ is a Type I solid region whose projection $\mathscr D$ onto the xy-plane has polar description

$$\mathscr{D} = \{ (r, \theta) \mid \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta) \}$$

Then

$$\iiint_{\mathcal{W}} f(x, y, z) \ dV = \iint_{\mathscr{D}} \left(\int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) \ dz \right) \ dA$$
$$= \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta, r\sin\theta)}^{u_2(r\cos\theta, r\sin\theta)} f(r\cos\theta, r\sin\theta, z)r \ dz \ dr \ d\theta$$
$$= \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{z_1(r, theta)}^{z_2(r, \theta)} f(r\cos\theta, r\sin\theta, z)r \ dz \ dr \ d\theta$$

where $h_i(x, y) = u_i(r \cos \theta, r \sin \theta) = z_i(r, \theta)$ are different expressions for the same relationship.

Example 1. Evaluate $\iiint_{\mathcal{W}} z\sqrt{x^2+y^2} \, dV$, where W is the cylinder $r^2 \leq 4$ with $1 \leq z \leq 5$.

Example 2. Evaluate $\iiint_{\mathcal{W}} z \ dV$, where \mathcal{W} is the region within the cylinder $x^2 + y^2 \leq 4$ with $0 \leq z \leq y$.

12.8.2 Triple Integrals in Spherical Coordinates

Recall Spherical Coordinates: https://www.geogebra.org/3d/qjk6hmgz

$ $ Spherical \rightarrow Rectangular	$ $ Rectangular \rightarrow Spherical
·	
$x = \rho \sin \varphi \cos \theta$	$\rho^2 = x^2 + y^2 + z^2$
	\downarrow γ
$y = \rho \sin \varphi \sin \theta$	$\tan \theta = -$
	x
$z = \rho \cos \varphi$	$\varphi = \arccos -$
, ,	ρ

Whereas with double integration in polar coordinates we integrated over a polar rectangle, here we triple integrate in spherical coordinates over a spherical wedge.

Definition

A spherical wedge is a solid described in spherical coordinates by $\mathcal{W} = [\underline{a}, \underline{b}] \times [\underline{\alpha}, \underline{\beta}] \times [\underline{\chi}, \underline{\psi}]$, where $a \ge 0, \ 0 \le \beta - \alpha \le 2\pi$, and $0 \le \psi - \chi \ge \pi$.

If we generalize a spherical wedge to allow ρ to vary between to surfaces dependent upon θ and φ , then we get the following theorem.

Theorem

Suppose f is integrable over a region \mathcal{W} defined by

$$\mathcal{W} = \{ (\rho, \theta, \varphi) \mid \alpha \le \theta \le \beta, \chi \le \varphi \le \psi, \rho_1(\theta, \varphi) \le \rho \le \rho_2(\theta, \varphi) \}$$

then

$$\iiint\limits_{\mathcal{W}} f(x,y,z) \, dV = \int_{\chi}^{\psi} \int_{\alpha}^{\beta} \int_{\rho_1(\theta,\varphi)}^{\rho_2(\theta,\varphi)} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^2 \sin \varphi d\rho \, d\theta \, d\varphi$$

A rationale is provided on the last page of this section.

Example 3. Compute the integral of $f(x, y, z) = x^2 + y^2$ over the sphere S of radius 3 centered at the origin.

Example 4. An ice cream filling a cone and making a spherical top can be approximately modeled according to the surfaces $z^2 = x^2 + y^2$ and $z = x^2 + y^2 + z^2$. It is known that the ice cream top is represented by a hemisphere, and two opposite edges make a right angle at the tip of the cone. Find the volume of the ice cream. (See https://www.geogebra.org/3d/vhqabgzk)

Spherical Wedge – Stewart, Concepts & Contexts, 4E, Figure 7, pp. 885

12.8.3 Rationale for the Triple Integrals Formula in Spherical Coordinates

Define a spherical wedge $\mathcal{W} = [a, b] \times [\alpha, \beta] \times [\chi, \psi]$, where $a \ge 0, 0 \le \beta - \alpha \le 2\pi$, and $0 \le \psi - \chi \ge \pi$. Divide \mathcal{W} into subwedges \mathcal{W}_{ijk} by cutting \mathcal{W} with equally spaced spheres $\rho = \rho_i$, half-planes $\theta = \theta_j$, and half-cones $\varphi = \varphi_k$. Then \mathcal{W}_{ijk} can be approximated by a rectangular box of dimensions $A \times B \times C$.

Now, $A = \Delta \rho$ (side extending away from the origin). For the side rotating according to θ , B, we have the length of an arc of a circle. The radius of that circle is r, and the angle of that arc is $\Delta \theta$. Converting r to spherical coordinates, we get that $r = \rho_i \sin \varphi_k$. Since the length of the arc of a circle is the product of the radius with the angle subtended by it, $B = \rho_i \sin \varphi_k \Delta \theta$. Lastly, we have the side rotating according to φ , C. For this side, we also have an arc of a circle whose radius is ρ_i , and the angle subtended by it is $\Delta \varphi$. It follows that $C = \rho_i \Delta \varphi$. Thus, an approximation for the volume of W_{ijk} is

$$\operatorname{size}(\mathcal{W}) \approx \Delta \rho \times \rho_i \Delta \varphi \times \rho_i \sin \varphi_k \Delta \theta$$
$$= \rho_i^2 \sin \varphi_k \Delta \rho \ \Delta \ \Delta \theta \ \Delta \varphi$$

We now consider the Riemann sum for f(x, y, z). That is

$$\frac{\sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V}{= \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f(\rho_{i} \sin \varphi_{k} \cos \theta_{j}, \rho_{i} \sin \varphi_{k} \sin \theta_{j}, \rho_{i} \cos \varphi_{k}) \rho_{i}^{2} \sin \varphi_{k} \Delta \rho \Delta \theta \Delta \varphi}$$

Damien Adams

Taking limits as $\ell, m, n \to \infty$, we get

$$\iiint_{\mathcal{W}} f(x, y, z) \, dV$$

= $\lim_{\ell, m, n \to \infty} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f(\rho_i \sin \varphi_k \cos \theta_j, \rho_i \sin \varphi_k \sin \theta_j, \rho_i \cos \varphi_k) \rho_i^2 \sin \varphi_k \, \Delta \rho \, \Delta \theta \, \Delta \varphi$
= $\int_{\chi}^{\psi} \int_{\alpha}^{\beta} \int_{\rho_1(\theta, \varphi)}^{\rho_2(\theta, \varphi)} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^2 \sin \varphi d\rho \, d\theta \, d\varphi$