12.8 Triple Integrals in Cylindrical \& Spherical Coordinates

12.8.1 Triple Integrals in Cylindrical Coordinates

Recall Cylindrical Coordinates: https://www.geogebra.org/3d/yesa2uja

Cylindrical \rightarrow Rectangular	Rectangular \rightarrow Cylindrical
$x=r \cos \theta$	$r^{2}=x^{2}+y^{2}$
$y=r \sin \theta$	$\tan \theta=\frac{y}{x}$
$z=z$	$z=z$

Theorem

Suppose \mathcal{W} is a Type I solid region whose projection \mathscr{D} onto the $x y$-plane has polar description

$$
\mathscr{D}=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
$$

Then

$$
\begin{aligned}
\iiint_{\mathcal{W}} f(x, y, z) d V & =\iint_{\mathscr{D}}\left(\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right) d A \\
& =\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta \\
& =\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{z_{1}(r, t h e t a)}^{z_{2}(r, \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
\end{aligned}
$$

where $h_{i}(x, y)=u_{i}(r \cos \theta, r \sin \theta)=z_{i}(r, \theta)$ are different expressions for the same relationship.

Example 1. Evaluate $\iiint_{\mathcal{W}} z \sqrt{x^{2}+y^{2}} d V$, where W is the cylinder $r^{2} \leq 4$ with $1 \leq z \leq 5$.

Example 2. Evaluate $\iiint_{\mathcal{W}} z d V$, where \mathcal{W} is the region within the cylinder $x^{2}+y^{2} \leq 4$ with $0 \leq z \leq y$.

12.8.2 Triple Integrals in Spherical Coordinates

Recall Spherical Coordinates: https://www.geogebra.org/3d/qjk6hmgz

Spherical \rightarrow Rectangular	Rectangular \rightarrow Spherical
$x=\rho \sin \varphi \cos \theta$	$\rho^{2}=x^{2}+y^{2}+z^{2}$
$y=\rho \sin \varphi \sin \theta$	$\tan \theta=\frac{y}{x}$
$z=\rho \cos \varphi$	$\varphi=\arccos \frac{z}{\rho}$

Whereas with double integration in polar coordinates we integrated over a polar rectangle, here we triple integrate in spherical coordinates over a spherical wedge.

Definition

A spherical wedge is a solid described in spherical coordinates by $\mathcal{W}=$ $\underbrace{[a, b]}_{\rho} \times \underbrace{[\alpha, \beta]}_{\theta} \times \underbrace{[\chi, \psi]}_{\varphi}$, where $a \geq 0,0 \leq \beta-\alpha \leq 2 \pi$, and $0 \leq \psi-\chi \geq \pi$.

If we generalize a spherical wedge to allow ρ to vary between to surfaces dependent upon θ and φ, then we get the following theorem.

Theorem

Suppose f is integrable over a region \mathcal{W} defined by

$$
\mathcal{W}=\left\{(\rho, \theta, \varphi) \mid \alpha \leq \theta \leq \beta, \chi \leq \varphi \leq \psi, \rho_{1}(\theta, \varphi) \leq \rho \leq \rho_{2}(\theta, \varphi)\right\}
$$

then

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\int_{\chi}^{\psi} \int_{\alpha}^{\beta} \int_{\rho_{1}(\theta, \varphi)}^{\rho_{2}(\theta, \varphi)} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \theta d \varphi
$$

A rationale is provided on the last page of this section.

Example 3. Compute the integral of $f(x, y, z)=x^{2}+y^{2}$ over the sphere \mathcal{S} of radius 3 centered at the origin.

Example 4. An ice cream filling a cone and making a spherical top can be approximately modeled according to the surfaces $z^{2}=x^{2}+y^{2}$ and $z=x^{2}+y^{2}+z^{2}$. It is known that the ice cream top is represented by a hemisphere, and two opposite edges make a right angle at the tip of the cone. Find the volume of the ice cream. (See https://www.geogebra.org/ 3d/vhqabgzk)

Spherical Wedge - Stewart, Concepts 8 Contexts, 4E, Figure 7, pp. 885

12.8.3 Rationale for the Triple Integrals Formula in Spherical Coordinates

Define a spherical wedge $\mathcal{W}=[a, b] \times[\alpha, \beta] \times[\chi, \psi]$, where $a \geq 0,0 \leq \beta-\alpha \leq 2 \pi$, and $0 \leq \psi-\chi \geq \pi$. Divide \mathcal{W} into subwedges $\mathcal{W}_{i j k}$ by cutting \mathcal{W} with equally spaced spheres $\rho=\rho_{i}$, half-planes $\theta=\theta_{j}$, and half-cones $\varphi=\varphi_{k}$. Then $\mathcal{W}_{i j k}$ can be approximated by a rectangular box of dimensions $A \times B \times C$.

Now, $A=\Delta \rho$ (side extending away from the origin). For the side rotating according to θ, B, we have the length of an arc of a circle. The radius of that circle is r, and the angle of that arc is $\Delta \theta$. Converting r to spherical coordinates, we get that $r=\rho_{i} \sin \varphi_{k}$. Since the length of the arc of a circle is the product of the radius with the angle subtended by it, $B=\rho_{i} \sin \varphi_{k} \Delta \theta$. Lastly, we have the side rotating according to φ, C. For this side, we also have an arc of a circle whose radius is ρ_{i}, and the angle subtended by it is $\Delta \varphi$. It follows that $C=\rho_{i} \Delta \varphi$. Thus, an approximation for the volume of $\mathcal{W}_{i j k}$ is

$$
\begin{aligned}
\operatorname{size}(\mathcal{W}) & \approx \Delta \rho \times \rho_{i} \Delta \varphi \times \rho_{i} \sin \varphi_{k} \Delta \theta \\
& =\rho_{i}^{2} \sin \varphi_{k} \Delta \rho \Delta \Delta \theta \Delta \varphi
\end{aligned}
$$

We now consider the Riemann sum for $f(x, y, z)$. That is

$$
\begin{aligned}
& \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V \\
& \quad=\sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(\rho_{i} \sin \varphi_{k} \cos \theta_{j}, \rho_{i} \sin \varphi_{k} \sin \theta_{j}, \rho_{i} \cos \varphi_{k}\right) \rho_{i}^{2} \sin \varphi_{k} \Delta \rho \Delta \theta \Delta \varphi
\end{aligned}
$$

Taking limits as $\ell, m, n \rightarrow \infty$, we get

$$
\begin{aligned}
& \iiint_{\mathcal{W}} f(x, y, z) d V \\
& \quad=\lim _{\ell, m, n \rightarrow \infty} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(\rho_{i} \sin \varphi_{k} \cos \theta_{j}, \rho_{i} \sin \varphi_{k} \sin \theta_{j}, \rho_{i} \cos \varphi_{k}\right) \rho_{i}^{2} \sin \varphi_{k} \Delta \rho \Delta \theta \Delta \varphi \\
& =\int_{\chi}^{\psi} \int_{\alpha}^{\beta} \int_{\rho_{1}(\theta, \varphi)}^{\rho_{2}(\theta, \varphi)} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \theta d \varphi
\end{aligned}
$$

