12.6 Parametric Surfaces

12.6.1 Parametric Surface - Preliminary Work for Surface Area

Goal: Find the surface area of a parametric surface S.
Recall that a parametric surface S is defined by a vector function of two variables, say

$$
\begin{aligned}
\mathbf{r}(u, v) & =x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k} \\
& =\langle x(u, v), y(u, v), z(u, v)\rangle
\end{aligned}
$$

where $(u, v) \in D$, a region of the $u v$-plane.
Let's subdivide S into "patches" and approximate the surface area of each patch. We will approximate the surface area of each patch with a small parallelogram tangent to S.

Let P_{0} be a point on S with position vector $\mathbf{r}\left(u_{0}, v_{0}\right)$. Keeping u constant with $u=u_{0}$, then $\mathbf{r}\left(u_{0}, v\right)$ depends only on a single parameter, producing a grid curve C_{1} on S. We can find a tangent vector along C_{1} at P_{0} by finding $\frac{\partial \mathbf{r}}{\partial v}\left(u_{0}, v_{0}\right)$. For shorthand, we will abbreviate $\mathbf{r}_{v}=\frac{\partial \mathbf{r}}{\partial v}\left(u_{0}, v_{0}\right)$. That is,

$$
\begin{aligned}
\mathbf{r}_{v} & =\frac{\partial x}{\partial v}\left(u_{0}, v_{0}\right) \mathbf{i}+\frac{\partial y}{\partial v}\left(u_{0}, v_{0}\right) \mathbf{j}+\frac{\partial z}{\partial v}\left(u_{0}, v_{0}\right) \mathbf{k} \\
& =\left\langle x_{v}\left(u_{0}, v_{0}\right), y_{v}\left(u_{0}, v_{0}\right), z_{v}\left(u_{0}, v_{0}\right)\right\rangle
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathbf{r}_{u} & =\frac{\partial x}{\partial u}\left(u_{0}, v_{0}\right) \mathbf{i}+\frac{\partial y}{\partial u}\left(u_{0}, v_{0}\right) \mathbf{j}+\frac{\partial z}{\partial u}\left(u_{0}, v_{0}\right) \mathbf{k} \\
& =\left\langle x_{u}\left(u_{0}, v_{0}\right), y_{u}\left(u_{0}, v_{0}\right), z_{u}\left(u_{0}, v_{0}\right)\right\rangle
\end{aligned}
$$

In order to adopt a bit more convention of language, we introduce this definition.

Definition

Let S be the parametric surface determined by $\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$. Let the normal vector to S at $\left(u_{0}, v_{0}\right)$ be $\mathbf{r}_{u} \times \mathbf{r}_{v}$. If the normal vector to S at $\left(u_{0}, v_{0}\right)$ is not $\mathbf{0}$, we say that S is smooth at $\left(u_{0}, v_{0}\right)$.

Theorem

If a parametric surface S is smooth at a point P, then there exists a tangent plane to S at P, and it can be found using the normal vector.

12.6.2 Parametric Surface - Building a Double Integral for Surface Area

Consider a surface S defined over a rectangle D. Subdivide D into $m n$ subrectangles $R_{i j}$ of width Δu and length Δv, and respectively subdivide S into $m n$ "patches" $S_{i j}$. In this way, $S_{i j}$ corresponds to $R_{i j}$. Choosing $\left(u_{i j}^{*}, v_{i j}^{*}\right)$ in each $R_{i j}$ to be lower-left corners, computations
will be a bit simpler. Then for each $\left(u_{i j}^{*}, v_{i j}^{*}\right)$, we have a corresponding position vector $\mathbf{r}\left(u_{i j}^{*}, v_{i j}^{*}\right)$ drawn from the origin to the lower-left corner of each patch, $P_{i j}$, where

$$
P_{i j}=\left(x\left(u_{i j}^{*}, v_{i j}^{*}\right), y\left(u_{i j}^{*}, v_{i j}^{*}\right), z\left(u_{i j}^{*}, v_{i j}^{*}\right)\right)
$$

Define $\mathbf{r}_{u}^{*}=\mathbf{r}_{u}\left(u_{i j}^{*}, v_{i j}^{*}\right)$ and $\mathbf{r}_{v}^{*}=\mathbf{r}_{v}\left(u_{i j}^{*}, v_{i j}^{*}\right)$. Then \mathbf{r}_{u}^{*} is a tangent vector to $S_{i j}$ at $P_{i j}$ in the direction of u, and \mathbf{r}_{v}^{*} is tangent to $S_{i j}$ at $P_{i j}$ in the direction of v. These two tangent vectors determine a parallelogram $\Pi_{i j}$

Figure 1: https://www.geogebra.org/3d/nhvnn4rv
Now, the area of $\Pi_{i j}$ can be found, and it approximates the surface area of $S_{i j}$. In particular,

$$
\begin{aligned}
\operatorname{Area}(S) & =\sum_{i=1}^{m} \sum_{j=1}^{n} S_{i j} \\
& \approx \sum_{i=1}^{m} \sum_{j=1}^{n} \Pi_{i j}
\end{aligned}
$$

From MTH $253,|\mathbf{a} \times \mathbf{b}|$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b}. In particular, the sides of the parallelograms $\Pi_{i j}$ are $\Delta u \mathbf{r}_{u}^{*}$ and $\Delta v \mathbf{r}_{v}^{*}$. It follows that

$$
\begin{aligned}
\operatorname{Area}\left(\Pi_{i j}\right) & =\mid\left(\text { Deltau }_{u}^{*}\right) \times\left(\Delta v \mathbf{r}_{v}^{*}\right) \mid \\
& =\left|\mathbf{r}_{u}^{*} \times \mathbf{r}_{v}^{*}\right| \Delta u \Delta v
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\operatorname{Area}(S) & =\sum_{i=1}^{m} \sum_{j=1}^{n} S_{i j} \\
& \approx \sum_{i=1}^{m} \sum_{j=1}^{n} \Pi_{i j} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n}\left|\mathbf{r}_{u}^{*} \times \mathbf{r}_{v}^{*}\right| \Delta u \Delta v
\end{aligned}
$$

Definition

If S is a smooth parametric surface determined by

$$
\begin{aligned}
\mathbf{r}(u, v) & =x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k} \\
& =\langle x(u, v), y(u, v), z(u, v)\rangle
\end{aligned}
$$

where $(u, v) \in D$, and S is covered just once as (u, v) ranges throughout the parameter domain D, then the surface area of S is

$$
\begin{aligned}
\operatorname{Area}(S) & =\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n}\left|\mathbf{r}_{u}^{*} \times \mathbf{r}_{v}^{*}\right| \Delta u \Delta v \\
& =\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbf{r}_{u} & =\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}+\frac{\partial z}{\partial u} \mathbf{k} & \mathbf{r}_{v} & =\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}+\frac{\partial z}{\partial v} \mathbf{k} \\
& =\left\langle x_{u}, y_{u}, z_{u}\right\rangle & & =\left\langle x_{v}, y_{v}, z_{v}\right\rangle
\end{aligned}
$$

Example 1. Find the surface area of the portion of the cone $x^{2}+y^{2}=z^{2}$ above the disk $x^{2}+y^{2}=4$.

12.6.3 Level Surface - Double Integral for Surface Area

Let S be the surface whose equation is $z=f(x, y)$, where f has continuous partial derivatives. For simplicity of computation, we will assume $f(x, y) \geq 0$ for all $(x, y) \in D$, a rectangle that S is defined over.

If we follow the same steps as before, then we arrive at a very similar picture that will guide us to our formula. We will subdivide D into $m n$ rectangles $R_{i j}$, and we will respectively subdivide S into $m n$ patches $S_{i j}$ with lower-left corners being $P_{i j}\left(x_{i}, y_{j}, f\left(x_{i}, y_{j}\right)\right)$.

If we compute tangent vectors to $S_{i j}$ at $P_{i j}$ in the x and y directions, we get

$$
\begin{aligned}
a & =\Delta x \mathbf{i}+f_{x}\left(x_{i}, y_{j}\right) \Delta x \mathbf{k} \\
b & =\Delta y \mathbf{i}+f_{y}\left(x_{i}, y_{j}\right) \Delta y \mathbf{k}
\end{aligned}
$$

Figure 2: https://www.geogebra.org/3d/bdpeprce
Again, we have that the area of $\Pi_{i j}$ can be found, and it approximates the surface area of $S_{i j}$. In particular,

$$
\begin{aligned}
\operatorname{Area}(S) & =\sum_{i=1}^{m} \sum_{j=1}^{n} S_{i j} \\
& \approx \sum_{i=1}^{m} \sum_{j=1}^{n} \Pi_{i j}
\end{aligned}
$$

The area of the parallelogram determined by \mathbf{a} and \mathbf{b} is $|\mathbf{a} \times \mathbf{b}|$, so it follows that Area $\left(\Pi_{i j}\right)=$ $|\mathbf{a} \times \mathbf{b}|$.

In order to simplify,

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\Delta x & 0 & f_{x}\left(x_{i}, y_{j}\right) \Delta x \\
0 & \Delta y & f_{y}\left(x_{i}, y_{j}\right) \Delta y
\end{array}\right| \\
& =\left(-f_{x}\left(x_{i}, y_{j}\right) \mathbf{i}-f_{y}\left(x_{i}, y_{j}\right) \mathbf{j}+\mathbf{k}\right) \Delta A \\
|\mathbf{a} \times \mathbf{b}| & =\sqrt{\left(\left(f_{x}\left(x_{i}, y_{j}\right)\right)^{2}+\left(f_{y}\left(x_{i}, y_{j}\right)\right)^{2}+1\right.} \Delta A
\end{aligned}
$$

Definition

If S is the surface whose equation is $z=f(x, y)$, where f has continuous partial derivatives and domain D, then

$$
\begin{aligned}
\operatorname{Area}(S) & =\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \sqrt{\left(\left(f_{x}\left(x_{i}, y_{j}\right)\right)^{2}+\left(f_{y}\left(x_{i}, y_{j}\right)\right)^{2}+1\right.} \Delta A \\
& =\iint_{D} \sqrt{\left(\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}+1\right.} d A \\
& =\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A
\end{aligned}
$$

Example 2. Find the surface area of the part of the surface $z=x^{2}+2 y$ that lies above the triangular region T in the $x y$-plane with vertices $(0,0),(1,0)$, and $(1,1)$.

Example 3. Find the area of the part of the paraboloid $z=x^{2}+y^{2}$ that lies under the plane $z=4$.

