13.2 Line Integrals

Consider a plane curve C with parametric equations

$$
x=x(t) \quad y=y(t) \quad a \leq t \leq b
$$

and thus by the vector equation $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}=\langle x(t), y(t)\rangle$. For simplicity of computation, let's assume C is smooth.

Let's subdivide $[a, b]$ into n subintervals $\left[t_{i-1}, t_{i}\right]$ of equal width $\Delta t=\frac{b-a}{n}$, and let $x_{i}=$ $x\left(t_{i}\right)$ and $y_{i}=y\left(t_{i}\right)$, and define the corresponding point $P_{i}\left(x_{i}, y_{i}\right)$. Then C is divided into corresponding subarcs of length $\Delta s_{1}, \Delta s_{2}, \ldots, \Delta s_{n}$, where Δs_{i} is the length of the part of the curve C between P_{i-1} and P_{i}. Choose any point $P_{i}^{*}\left(x_{i}^{*}, y_{i}^{*}\right)$ in the i th subarc.

Now, if f is any function of two variables whose domain includes C, we evaluate f at $\left(x_{i}^{*}, y_{i}^{*}\right)$ and multiply by Δs_{i} to obtain a type of Riemann sum $-\sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}$. Note that this is not a Riemann sum due to Δs_{i} not being constant, but it's close.

Definition

If f is defined on a smooth curve C whose equations are given by $x=x(t), y=$ $y(t), a \leq t \leq b$, then the line integral of f along C is

$$
\int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

provided this limit exists.

Now, we have previously found that the length of C is given by

$$
L=\int_{a}^{b} d s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Since the Δs_{i} in question measure length of an arc, this formula is clearly important. In fact, if we make the substitution

$$
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

we obtain

Theorem

If f is defined on a smooth curve C whose equations are given by $x=x(t), y=$ $y(t), a \leq t \leq b$, then

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Provided that the curve is traversed exactly once as t increases from a to b, this integral will always produce the same value regardless of the parametrization.

Example 1. Evaluate $\int_{C}\left(2+x^{2} y\right) d s$, where C is the upper half of the unit circle.

Definition

A curve C is called piecewise-smooth if C is a union of a finite number of smooth curves $C_{1}, C_{2}, \ldots, C_{n}$, where the terminal point of C_{i-1} is the initial point of C_{i}.

Definition

If C is a piecewise-smooth curve as described in the definition above, then

$$
\int_{C} f(x, y) d s=\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s+\cdots+\int_{C_{n}} f(x, y) d s
$$

Example 2. Evaluate $\int_{C} 2 x d s$, where C is the curve that follows $y=x^{2}$ from the origin to $(1,1)$, then travels linearly from $(1,1)$ to $(1,2)$.

If you want to set up a line integral with respect to x or y, then that is also plausible. In fact,

Definition

If f is defined on a smooth curve C whose equations are given by $x=x(t), y=$ $y(t), a \leq t \leq b$, then

$$
\begin{aligned}
\int_{C} f(x, y) d x & =\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \\
\int_{C} f(x, y) d y & =\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t \\
\int_{C} f(x, y) d s & =\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\end{aligned}
$$

where the first integral is a line integral of f along C with respect to x, the second is a line integral of f along C with respect to y, and the final (original) integral is a line integral with respect to arc length.

Note: When setting up a line integral, it is often difficult to come up with a parametric representation for C. It is often useful to consider the parametric representation for C whose initial point is given by \mathbf{r}_{0} and terminal point is given by \mathbf{r}_{1} as follows

$$
\mathbf{r}(t)=(1-t) \mathbf{r}_{0}+t \mathbf{r}_{1} \quad 0 \leq t \leq 1
$$

Example 3. Evaluate $\int_{C} y^{2} d x+x d y$ for two different curves C beginning at $(-5,-3)$ and ending at $(0,2)$.
a. C is the line segment from $(-5,-3)$ to $(0,2)$.
b. C is the arc of the parabola $x=4-y^{2}$ from $(-5,-3)$ to $(0,2)$.

Make a generalization about based on your results.

A similar line integral can be defined for three-dimensional space. That is,

Definition

If f is defined on a smooth curve C whose equations are given by $x=x(t), y=$ $y(t), z=z(t), a \leq t \leq b$, then

$$
\begin{aligned}
& \int_{C} f(x, y, z) d x=\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t \\
& \int_{C} f(x, y, z) d y=\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t \\
& \int_{C} f(x, y, z) d y=\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t
\end{aligned}
$$

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

Example 4. Evaluate $\int_{C} y \sin z d s$, where C is the circular helix $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$ with $t \in[0,2 \pi]$. Note that $\sin ^{2} t=\frac{1}{2}(1-\cos 2 t)$.

Definition

Let \mathbf{F} be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t)$ with $a \leq t \leq b$. The line integral of \mathbf{F} along C is

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

Note:

- \mathbf{F} is an abbreviation of $\mathbf{F}(x, y, z)$
- $d \mathbf{r}$ is an abbreviation for $\mathbf{r}^{\prime}(t) d t$
- $\mathbf{F}(\mathbf{r}(t))$ is an abbreviation for $\mathbf{F}(x(t), y(t), z(t))$

Notice that if $\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$, then

$$
\begin{aligned}
\mathbf{F} \cdot d \mathbf{r} & =(P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}) \cdot\left(x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k}\right) \\
& =P(x, y, z) x^{\prime}(t) \mathbf{i}+Q(x, y, z) y^{\prime}(t) \mathbf{j}+R(x, y, z) z^{\prime}(t) \mathbf{k}
\end{aligned}
$$

Theorem

If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a continuous vector field defined on a smooth curve C, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y+R d z
$$

