13.3 Fundamental Theorem of Line Integrals

13.3.1 The Fundamental Theorem for Line Integrals

The Fundamental Theorem for Line Integrals

Let C be a smooth curve whose vector function is $\mathbf{r}(t)$ with $t \in[a, b]$. Let f be a differentiable function whose gradient vector ∇f is continuous on C. Then

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f[\mathbf{r}(b)]-f[\mathbf{r}(a)]
$$

That is, to evaluate a line integral over a conservative vector field, find a potential function, evaluate it at the endpoints, and subtract.

Thus, the line integral of a conservative vector field depends only on the initial and terminal points of a curve.

Note:

- In $\mathbb{R}, \int_{C} \nabla f \cdot d \mathbf{r}=f\left(x_{2}\right)-f\left(x_{1}\right)$.
- In $\mathbb{R}^{2}, \int_{C} \nabla f \cdot d \mathbf{r}=f\left(x_{2}, y_{2}\right)-f\left(x_{1}, y_{1}\right)$.
- In $\mathbb{R}^{3}, \int_{C} \nabla f \cdot d \mathbf{r}=f\left(x_{2}, y_{2}, z_{2}\right)-f\left(x_{1}, y_{1}, z_{1}\right)$.

Proof:

13.3.2 Path Independence

Definition

If C is a piecewise-smooth curve with initial point A and terminal point B, then we call C a path from A to B.

Example 1. Let C be a path from $(1,0)$ to $(-1,0)$ along the unit circle. Find

$$
\int_{C}\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle \cdot d \mathbf{r}
$$

Definition

If \mathbf{F} is a continuous vector field with domain D, we say that the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is path-independent (or independent of path) if

$$
\int_{C_{1}} \nabla f \cdot d \mathbf{r}=\int_{C_{2}} \nabla f \cdot d \mathbf{r}
$$

for any two paths C_{1} and C_{2} in D that have the same initial and terminal points.
Example 2. Let C be a path from $(1,0)$ to $(-1,0)$ along the parabola $y=1-x^{2}$. Find

$$
\int_{C}\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle \cdot d \mathbf{r}
$$

Theorem

Let ∇f be continuous. If C_{1}, C_{2} are two paths from A to B, then

$$
\int_{C_{1}} \nabla f \cdot d \mathbf{r}=\int_{C_{2}} \nabla f \cdot d \mathbf{r}
$$

Definition

A path is called closed if its terminal point coincides with its initial point.

Theorem

The line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is path-independent in D iff $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for every closed path C in D.

All of this is to say that line integrals in a conservative vector field are significantly nicer to compute that in a general vector field. So how can we identify when a vector field is conservative?

Definition

A set D in \mathbb{R}^{3} is open if for every point $P \in D$, there is a disk with center P that lies entirely in D.

Definition

A set D in \mathbb{R}^{3} is connected if for any two points in D there is a path in D that connects them.

Theorem

Suppose \mathbf{F} is a vector field that is continuous on an open connected region D. If $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is path-independent in D, then \mathbf{F} is a conservative vector field on D. That is, there exists a potential function for \mathbf{F}. That is, there exists a function f such that $\nabla f=\mathbf{F}$.

13.3.3 Simply-Connected Regions

Theorem

If $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is a conservative vector field, where P and Q have continuous first-order partial derivatives on D, then for all $(x, y) \in D$,

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

Definition

A curve that does not intersect itself between its endpoints is called a simple curve.

Definition

Let D be a planar region. We say that D is a simply-connected region if every simple closed curve in D encloses only points in D.

Theorem

Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ be a vector field on an open simply-connected region D. If P, Q have continuous first-order partial derivatives and for all $(x, y) \in D$

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

then \mathbf{F} is conservative.
Note: We use the above theorem to determine whether a field is conservative or not. This is one of the big goals we wished to achieve.

Note: Potential Function and Conservative Vector Field are analogous to Potential Energy and Conservation of Energy in physics.

Example 3. Determine whether the vector field is conservative or not.

$$
\mathbf{F}(x, y)=\left(2 x+3 x^{4} y^{5}\right) \mathbf{i}+\left(-6 y+3 x^{5} y^{4}\right) \mathbf{j}
$$

13.3.4 Partial Integration

We've seen partial differentiation, and now we are looking for potential functions of a conservative vector field, so we introduce the idea of partial integration.

Example 4. Suppose $\mathbf{F}(x, y)=(3+2 x y) \mathbf{i}+\left(x^{2}-3 y^{2}\right) \mathbf{j}$.
a. Determine if \mathbf{F} is conservative or not.
b. If \mathbf{F} is conservative, find a potential function f for \mathbf{F}.
c. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is given by

$$
\mathbf{r}(t)=\left\langle e^{t} \sin t, e^{t} \cos t\right\rangle \quad, \quad t \in[0, \pi]
$$

Example 5. Find a potential function for $\mathbf{F}(x, y, z)=\left\langle y^{2}, 2 x y+e^{3 z}, 3 y e^{3 z}\right\rangle$.

