13.5 Curl \& Divergence

13.5.1 Curl

Definition

We define the symbol ∇, pronounced "del" or "nabla", as the vector differential operator that operates on a multivariable function and outputs the vector field with partial derivatives of the function listed in corresponding components. That is,

$$
\nabla=\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle
$$

And therefore

$$
\begin{aligned}
\nabla f & =\left(\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}\right) f \\
& =\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k} \\
& =f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k} \\
& =\left\langle f_{x}, f_{y}, f_{z}\right\rangle
\end{aligned}
$$

Definition

If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field on \mathbb{R}^{3} and the partial derivatives of P, Q, R all exist, then we define the curl of \mathbf{F} to be the vector field on \mathbb{R}^{3} defined by

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\left(R_{y}-Q_{z}\right) \mathbf{i}+\left(P_{z}-R_{x}\right) \mathbf{j}+\left(Q_{x}-P_{y}\right) \mathbf{k} \\
& =\nabla \times \mathbf{F}
\end{aligned}
$$

Note: The curl of a vector field is a definition of differentiation on a vector field that produces a vector field.

Note: The word "curl" is used because the curl has to do with rotating a vector field.
Example 1. Find the curl of $\mathbf{F}(x, y, z)=\ln (2 y+3 z) \mathbf{i}+\ln (x+3 z) \mathbf{j}+\ln (x+2 y) \mathbf{k}$

Theorem

If f is a function of three variables with continuous second-order partial derivatives, then

$$
\operatorname{curl}(\nabla f)=\mathbf{0}
$$

Proof:

The previous theorem can be restated as such:

Theorem

If \mathbf{F} is conservative, then $\operatorname{curl} \mathbf{F}=\mathbf{0}$.

Note: The negation of this theorem states "If curl $\mathbf{F} \neq \mathbf{0}$, then \mathbf{F} is not conservative.
Example 2. Determine if $\mathbf{F}(x, y, z)=\ln (2 y+3 z) \mathbf{i}+\ln (x+3 z) \mathbf{j}+\ln (x+2 y) \mathbf{k}$ is conservative or not.

Theorem

If \mathbf{F} is a vector field defined on \mathbb{R}^{3} whose component functions have continuous partial derivatives and $\operatorname{curl} \mathbf{F}=\mathbf{0}$, then \mathbf{F} is conservative.

Definition

If \mathbf{F} represents the velocity field for fluid flow and $\operatorname{curl} \mathbf{F}=\mathbf{0}$ at a point P, then the fluid is free from rotations at P, and we call \mathbf{F} irrotational at P.

13.5.2 Divergence

Definition

If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field on \mathbb{R}^{3}, and P_{x}, Q_{y}, R_{z} exist, then we define the divergence of \mathbf{F} to be the multivariable function (scalar field) defined by

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =P_{x}+Q_{y}+R_{z} \\
& =\nabla \cdot \mathbf{F}
\end{aligned}
$$

Note: The divergence of a vector field is a definition of differentiation on a vector field that produces a scalar field.

Example 3. If $\mathbf{F}(x, y, z)=\ln (2 y+3 z) \mathbf{i}+\ln (x+3 z) \mathbf{j}+\ln (x+2 y) \mathbf{k}$, find $\operatorname{div} \mathbf{F}$.

Example 4. If $\mathbf{F}(x, y, z)=x^{2} y z \mathbf{i}+x y^{2} z \mathbf{j}+x y z^{2} \mathbf{k}$, find $\operatorname{div} \mathbf{F}$.

Theorem

If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field on \mathbb{R}^{3}, and P, Q, R have continuous second-order partial derivatives, then

$$
\operatorname{div} \operatorname{curl} \mathbf{F}=0
$$

Proof:

Example 5. Show that $\mathbf{F}(x, y, z)=x^{2} y z \mathbf{i}+x y^{2} z \mathbf{j}+x y z^{2} \mathbf{k}$ cannot be written as the curl of another vector field.

We now have a vast collection of differential operators. Another one comes from looking at the divergence of a gradient vector field. That is

$$
\operatorname{div}(\nabla f)=\nabla \cdot(\nabla f)
$$

We will define this new quantity as ∇^{2}.

Definition

If f is a scalar field with continuous second-order partial derivatives, then ∇^{2} is called the Laplace operator, and Laplace's equation is defined as

$$
\nabla^{2} f=f_{x x}+f_{y y}+f_{z z}
$$

Moreover, if $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$, then

$$
\nabla^{2} \mathbf{F}=\nabla^{2} P \mathbf{i}+\nabla^{2} Q \mathbf{j}+\nabla^{2} R \mathbf{k}
$$

Example 6. Let $f(x, y, z)=x^{2} y z+x y^{2} z+x y z^{2}$. Find $\nabla^{2} f$.

Now that we have curl and divergence, we can revisit Green's Theorem with this new understanding.

Suppose D is a Cartesian region with boundary C and P, Q ass satisfy the requirements for Green's Theorem. Then for $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$,

$$
\oint \mathbf{F} \cdot d \mathbf{r}=\oint_{C} P d x+Q d y
$$

and if we consider $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+0 \mathbf{k}$, then \mathbf{F} is now a vector field on \mathbb{R}^{3}, and

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & 0
\end{array}\right| \\
& =\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} & =\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k} \cdot \mathbf{k} \\
& =\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)
\end{aligned}
$$

Green's Theorem in Vector Form

Let D be the Cartesian region bounded by a positively oriented, piecewise-smooth, simple closed curve C. If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ where P and Q have continuous partial derivatives on an open region that contains D, then

$$
\oint \mathbf{F} \cdot d \mathbf{r}=\oint_{C} P d x+Q d y=\iint_{D}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} d A
$$

Since $d \mathbf{r}=\mathbf{T} d s$ This theorem expresses the line integral of the tangential component of \mathbf{F} along C as the double integral of the vertical component of curl \mathbf{F} over D. What about the normal component?

Suppose C is given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$ with $a \leq t \leq b$. Then

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{x^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{i}+\frac{y^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{j}
$$

It can be shown that

$$
\mathbf{n}(t)=\frac{y^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{i}-\frac{x^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{j}
$$

where $\mathbf{n}(t)$ is the outward normal vector to C. Then

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=
$$

Theorem

$$
\oint \mathbf{F} \cdot \mathbf{n} d s=\iint_{D}(\operatorname{div} \mathbf{F}(x, y)) d A
$$

That is, the line integral of the normal component of \mathbf{F} along C is equal to the double integral of the divergence of \mathbf{F} over D.

