### 13.10 Applications of Vector Calculus

### 13.10.1 Flow

Suppose a fluid with constant density $\rho$ is flowing in a three-dimensional space, and $\mathbf{v}(x, y, z)$ is the velocity field for that fluid. Then $\mathbf{F}=\rho \mathbf{v}$ is the rate of flow per unit area of the fluid. Suppose further that $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is a point in the fluid, and $B_{a}$ is a ball around $P_{0}$ with radius $a>0$.

We can approximate the divergence of $\mathbf{F}$ at any point $P \in B_{a}$ by using $\operatorname{div} \mathbf{F}(P) \approx \operatorname{div} \mathbf{F}\left(P_{0}\right)$, and we can use this to approximate the flux over the boundary sphere $S_{a}$ of $B_{a}$ as such.

$$
\begin{aligned}
\iint_{S_{a}} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{B_{a}} \operatorname{div} \mathbf{F} d V \\
& \approx \iiint_{B_{a}} \operatorname{div} \mathbf{F}\left(P_{0}\right) d V \\
& =\operatorname{div} \mathbf{F}\left(P_{0}\right) \iiint_{B_{a}} 1 d V \\
& =\operatorname{div} \mathbf{F}\left(P_{0}\right) V\left(B_{a}\right)
\end{aligned}
$$

Notice that as $a \rightarrow 0$, this approximation improves. Thus,

$$
\operatorname{div} \mathbf{F}\left(P_{0}\right)=\lim _{a \rightarrow 0} \frac{1}{V\left(B_{a}\right)} \iint_{S_{a}} \mathbf{F} \cdot d \mathbf{S}
$$

## Definition

Suppose $\mathbf{F}$ is the rate of flow per unit area at a point $P$. If $\operatorname{div} \mathbf{F}(P)>0$, we say that $P$ is a source. If $\operatorname{div} \mathbf{F}(P)<0$, we say that $P$ is a sink.

Example 1. Let $\mathbf{F}=\langle\ln | x|-\cos x, \sqrt{y}-y \sin y\rangle$. Let $P_{1}(2,2)$ and $P_{2}(-2,2)$ be points in the plane. Classify each of $P_{1}$ and $P_{2}$ as either a sink or a source.

### 13.10.2 Mass

## Definition

A lamina is a 2-dimensional closed surface with mass and surface density.

## Definition

If a lamina has the shape of a surface $S$ and density (mass per unit area) $\rho(x, y, z)$, then the mass of the sheet is

$$
m=\iint_{S} \rho(x, y, z) d S
$$

and the center of mass is $(\bar{x}, \bar{y}, \bar{z})$, where

$$
\begin{aligned}
\bar{x} & =\frac{1}{m} \iint_{S} x \rho(x, y, z) d S \\
\bar{y} & =\frac{1}{m} \iint_{S} y \rho(x, y, z) d S \\
\bar{z} & =\frac{1}{m} \iint_{S} z \rho(x, y, z) d S
\end{aligned}
$$

Example 2. Find the mass and center of mass of the thin conical funnel $z=\sqrt{x^{2}+y^{2}}$, $1 \leq z \leq 4$, if its density is $\rho(x, y, z)=10-z$.

### 13.10.3 Applications of Flux to Physics

## Definition

If $\mathbf{E}$ is an electric field, then the surface integral

$$
\iint_{S} \mathbf{E} \cdot d \mathbf{S}
$$

is called the electric flux of $\mathbf{E}$ through the surface $S$.

## Gauss' Law

Suppose $\mathbf{E}$ is an electric field. The net charge enclosed by a closed surface $S$ is

$$
Q=\varepsilon_{0} \iint_{S} \mathbf{E} \cdot d \mathbf{S}
$$

Note: The number $\varepsilon_{0}$ is a constant called the permittivity of free space (or the electric constant) and is approximated by $\varepsilon_{0} \approx 8.8542 \times 10^{-12}$ and is measured in $\frac{F}{m}=\frac{C^{2}}{N m}$, where $F$ is a Farad, $C$ is a Coulomb, and $N$ is a Newton.

Example 3. Suppose $\mathbf{E}=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}$ is an electric field. Find the net charge of $\mathbf{E}$ enclosed by the unit sphere. (Hint: See the section on Flux)

## Definition

Suppose the temperature at a point $(x, y, z)$ in a body is $u(x, y, z)$. Then the heat flow is the vector field

$$
\mathbf{F}=-K \nabla u
$$

The constant $K$ is defined experimentally and is called the conductivity of the substance.
The rate of heat flow across the surface $S$ in the body is given by

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=-K \iint_{S} \nabla u \cdot d \mathbf{S}
$$

Example 4. The temperature $u$ in a metal ball is proportional to the square of the distance from the center of the ball. Find the rate of heat flow across a sphere $S$ of radius $a$ at the center of the ball.

