MTH 255
 Mini Test 4

Damien Adams

(8) 1. Let S be the surface whose equation is $z=\frac{2}{3}\left(x^{\frac{3}{2}}+y^{\frac{3}{2}}\right)$ over the square whose vertices in the $x y$-plane are $(0,0),(1,0),(0,1)$, and $(1,1)$. Find $\iint_{S} y d S$. Round your conclusion to the nearest hundredth.
(8) 2. Let C be the curve of intersection of the plane $-y+z=2$ and the cylinder $x^{2}+y^{2}=1$. Let $\mathbf{F}=$ $\langle 2 y, x z, x+y\rangle$. Assuming C is oriented counterclockwise when viewed from above, evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(9) 3. Let S be the tetrahedron enclosed by the coordinate planes and the plane $6 x+3 y+2 z=6$. Let $\mathbf{F}=\langle z, y, x z\rangle$. Find the flux of \mathbf{F} across S.

