MTH 255
 Mini Test 3

Damien Adams

(6) 1. Use a change of variables and an appropriate transformation to evaluate $\iint_{R} x y d A$, where R is the square on the origin, $(1,1),(2,0)$, and $(1,-1)$.
(5) 2. Find the gradient field for $f(x, y)=\frac{1}{2}\left(x^{2}-y^{2}\right)$. Sketch the gradient field near the origin. Draw enough to give a good idea of how the gradient field will behave.
(7) 3. Let C be the curve given by $\mathbf{r}(t)=\langle t, \cos 2 t, \sin 2 t\rangle$ with $t \in[0,2 \pi]$. Evaluate $\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s$.
(7) 4. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle y^{2} z+2 x z^{2}, 2 x y z, x y^{2}+2 x^{2} z\right\rangle$, and C is given by $\mathbf{r}(t)=\left\langle\sqrt{t}, t+1, t^{2}\right\rangle$ with $t \in[0,1]$.

