MTH 253
 Mini Test 1

Damien Adams

(8) 1. Use a linear approximation for $f(x)=\frac{1}{x}$ at $a=2$ to approximate $\frac{1}{1.998}$. Round your conclusion to the nearest ten-thousandth.
(8) 2. The equation $x^{5}+x^{3}+6=3 x^{4}+x^{2}+x$ has 3 real roots. Use Newton's method to approximate these roots with x_{3}. Make initial approximations of $x_{1}=-1,1,3$. Show all work to support your conclusions, and round your conclusions to the nearest hundredth.
(4) 3. Suppose a population is modeled by the differential equation $\frac{d P}{d t}=1.01 P\left(1-\frac{P}{253}\right)$.
(a) What is the carrying capacity for this population?
(b) If the initial population is $P=100$, is this population going to grow or decay? What tells you this?
(c) If the initial population is $P=300$, is this population going to grow or decay? What tells you this?
(5) 4. Show that $y=\frac{e^{x}+e^{-x}}{2}$ is a solution to the second-order differential equation below.

$$
y^{\prime \prime}-y^{\prime}+2 y-2 e^{-x}=e^{x}
$$

