MTH 252
 Midterm Review

Damien Adams

1. Find the absolute extrema of $f(x)=\frac{x}{x^{2}-x+1}$ on the interval $[0,3]$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}-x+1\right)(1)-(x)(2 x-1)}{\left(x^{2}-x+1\right)^{2}} \\
& =-\frac{x^{2}-1}{\left(x^{2}-x+1\right)^{2}} \\
& =-\frac{(x+1)(x-1)}{\left(x^{2}-x+1\right)^{2}}
\end{aligned}
$$

The only critical value is 1 , since $-1 \notin[0,3]$.

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(3)=\frac{3}{7}
\end{aligned}
$$

Therefore, the absolute maximum is 1 , and the absolute minimum is 0 .
2. Given $f(x)=\frac{x}{x^{2}+1}$, find
(a) The intervals of increase and decrease
(b) The local extrema
(c) The intervals of concavity
(d) The point(s) of inflection

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}+1\right)(1)-(x)(2 x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{x^{2}-2 x^{2}+1}{\left(x^{2}+1\right)^{2}} \\
& =-\frac{x^{2}-1}{\left(x^{2}+1\right)^{2}} \\
& =-\frac{(x+1)(x-1)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

So the critical numbers are -1 and 1. Moreover,

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(x^{2}+1\right)^{2}(-2 x)-\left(-x^{2}+1\right)\left(2\left(x^{2}+1\right)(2 x)\right)}{\left(x^{2}+1\right)^{4}} \\
& =\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$

So there are possible points of inflection at $x=0$ and $x= \pm \sqrt{3}$.

x	$-\sqrt{3}$	-1	0	1	$\sqrt{3}$		
$f^{\prime}(x)$	-	0	+	0	-		
$f^{\prime \prime}(x)$	-	0	+	0	-	0	+

Therefore,
(a) f is increasing on $(-1,1)$ and decreasing on $(-\infty,-1)$ and $(1, \infty)$.
(b) f has a local minimum at $-\frac{1}{2}$ and a local max at $\frac{1}{2}$.
(c) f is concave up on $(-\sqrt{3}, 0)$ and $(\sqrt{3}, \infty) . f$ is concave down on $(-\infty,-\sqrt{3})$ and $(0, \sqrt{3})$.
(d) f has a point of inflection at $\left(-\sqrt{3},-\frac{\sqrt{3}}{4}\right),(0,0)$, and $\left(\sqrt{3}, \frac{\sqrt{3}}{4}\right)$.
3. Sketch the graph of a function f satisfying all of the following properties:
(i) $f^{\prime \prime}(x)>0$ on $(-\infty,-1),(-1,2)$
(ii) $f^{\prime \prime}(x)<0$ on $(2, \infty)$
(iii) $f^{\prime}(x)>0$ on $(-\infty,-1),(1,3)$
(iv) $f^{\prime}(x)<0$ on $(-1,1),(3, \infty)$
(v) $f^{\prime}(-1)$ does not exist
(vi) $f(-1)=2$

Solution: The graph below satisfies the given conditions.

4. Find $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\tan 5 x}$.

Solution: Since $\lim _{x \rightarrow 0} \sin 4 x=\lim _{x \rightarrow 0} \tan 5 x=0$, we can use L'Hôspital.

$$
\lim _{x \rightarrow 0} \frac{\sin 4 x}{\tan 5 x}=\lim _{x \rightarrow 0} \frac{4 \cos 4 x}{5 \sec ^{2} 5 x}=\frac{4}{5}
$$

5. Find $\lim _{x \rightarrow 0^{+}} \sin x \ln x$.

Solution: Since $\lim _{x \rightarrow 0^{+}} \sin x=0$ and $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$, we have an indeterminate form of type $0 \cdot \infty$. We can rewrite and use L'Hôspital.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc x} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc x \cot x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-\sin x \tan x}{x} \quad \frac{0}{0} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-\cos x \tan x-\sin x \sec ^{2} x}{1} \\
& =0
\end{aligned}
$$

6. Find $\lim _{x \rightarrow 0} \frac{e^{4 x}-1-4 x}{x^{2}}$.

Solution: This has type $\frac{0}{0}$, so

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{4 x}-1-4 x}{x^{2}} & =\lim _{x \rightarrow 0} \frac{4 e^{4 x}-4}{2 x} \quad \frac{0}{0} \\
& =\lim _{x \rightarrow 0} \frac{16 e^{4 x}}{2} \\
& =\frac{16}{2}=8
\end{aligned}
$$

7. A rectangular storage container with an open top is to have a volume of 10 cubic meters. The length of its base is twice the width. Material for its base costs $\$ 10$ per square meter. Material for the sides costs $\$ 6$ per square meter. Find the cost of materials for the cheapest such container.

Solution: The volume of a rectangular prism is $V=\ell w h=(2 w) w h=2 w^{2} h$. Since the volume is $10 \mathrm{~m}^{2}, 10=2 w^{2} h$, so $5=w^{2} h$.
The surface area of the container is

$$
\begin{aligned}
S & =\underbrace{2 w h+2 w \ell}_{\text {sides }}+\underbrace{w \ell}_{\text {base }} \\
& =2 h(w+\ell)+\ell w \\
& =2 h(w+2 w)+(2 w) w \\
& =6 w h+2 w^{2}
\end{aligned}
$$

Since $5=w^{2} h, h=\frac{5}{w^{2}}$, and so

$$
S=6\left(\frac{5}{w^{2}}\right) w+2 w^{2}=\underbrace{\frac{30}{w}}_{\text {sides }}+\underbrace{2 w^{2}}_{\text {base }}
$$

So the cost of the container is

$$
\begin{aligned}
C & =\frac{30}{w}(6)+\left(2 w^{2}\right)(10) \\
& =\frac{180}{w}+20 w^{2} \\
\frac{d C}{d w} & =-\frac{180}{w^{2}}+40 w \\
& =-20\left(\frac{9}{w^{2}}-2 w\right)
\end{aligned}
$$

The critical number of C is just $\sqrt[3]{\frac{9}{2}}$, found by solving $\frac{d C}{d w}=-20\left(\frac{9}{w^{2}}-2 w\right)=0$. Using the first derivative test, we find that

x			
$f^{\prime}(x)$	$-\quad 0 \quad+$		

Since $C\left(\sqrt[3]{\frac{9}{2}}\right) \approx 163.54$, the minimal cost is $\$ 163.54$.
8. Find the most general antiderivative of $f(x)=8 x^{9}-3 x^{6}+12 x^{3}$.

Solution: | $F(x)$ | $=\frac{8}{10} x^{10}-\frac{3}{7} x^{7}+\frac{12}{4} x^{4}+C$ |
| ---: | :--- |
| | $=\frac{4}{5} x^{10}-\frac{3}{7} x^{7}+3 x^{4}+C$ |

9. Find the most general antiderivative of $f(t)=\sin t+2 \cos t$.

Solution: $F(t)=-\cos t-2 \sin t+C$
10. Find f if $f^{\prime}(t)=5 t^{4}-3 t^{2}+4$ and $f(-1)=2$.

Solution:

$$
\begin{aligned}
f(t) & =\frac{5}{5} t^{5}-\frac{3}{3} t^{3}+4 t+C \\
& =t^{5}-t^{3}+4 t+C \\
2 & =f(-1) \\
& =(-1)^{5}-(-1)^{3}+4(-1)+C \\
& =-4+C \Longrightarrow C=6
\end{aligned}
$$

$$
f(t)=t^{5}-t^{3}+4 t+6
$$

11. Find f if $f^{\prime \prime}(x)=8 x^{3}+5$ and $f(1)=0, f^{\prime}(1)=8$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{8}{4} x^{4}+5 x+C \\
& =2 x^{4}+5 x+C \\
8 & =f^{\prime}(1) \\
& =2(1)^{4}+5(1)+C \\
& =7+C \Longrightarrow C=1 \\
f^{\prime}(x) & =2 x^{4}+5 x+1 \\
f(x) & =\frac{2}{5} x^{5}+\frac{5}{2} x^{2}+x+\hat{C} \\
0 & =f(1) \\
& =\frac{2}{5}(1)^{5}+\frac{5}{2}(1)^{2}+(1)+\hat{C} \\
& =\frac{39}{10}+\hat{C} \Longrightarrow \hat{C}=-\frac{39}{10} \\
f(x) & =\frac{2}{5} x^{5}+\frac{5}{2} x^{2}+x-\frac{39}{10}
\end{aligned}
$$

12. A particle is moving so that $a(t)=3 \cos t-2 \sin t$ with $s(0)=0$ and $v(0)=4$. Find the position of the particle.

$$
\begin{aligned}
& \text { Solution: } \quad \begin{aligned}
v(t) & =3 \sin t+2 \cos t+C \\
4 & =v(0) \\
& =3 \sin 0+2 \cos 0+C \\
& =2+C \Longrightarrow C=2 \\
v(t) & =3 \sin t+2 \cos t+2 \\
s(t) & =-3 \cos t+2 \sin t+2 t+\hat{C} \\
0 & =s(0) \\
& =-3 \cos 0+2 \sin 0+2(0)+\hat{C} \\
& =-3+\hat{C} \Longrightarrow \hat{C}=3 \\
s(t) & =-3 \cos t+2 \sin t+2 t+3
\end{aligned}
\end{aligned}
$$

13. Write a Riemann sum for $f(x)=\sin x$ on $0 \leq x \leq \frac{3 \pi}{2}$ with six subintervals, taking sample points to be left endpoints, then find the sum.

Solution: Begin by graphing $y=\sin x$. Split the x-axis into six subintervals on $\left[0, \frac{3 \pi}{2}\right]$. So $\Delta x=\frac{\frac{3 \pi}{2}-0}{6}=\frac{\pi}{4}$. Draw rectangles on each of those subintervals, taking heights to be vertical from the left endpoints.

Now, $n=6, f(x)=\sin x$, and $x_{i}^{*}=a+i \Delta x=0+i \frac{\pi}{4}$, so the Riemann sum is

$$
\begin{aligned}
L_{6} & =\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\sum_{i=1}^{6} \sin \left(i \frac{\pi}{4}\right) \frac{\pi}{4} \\
& =\frac{\pi}{4}\left(\sin 0+\sin \frac{\pi}{4}+\sin \frac{\pi}{2}+\sin \frac{3 \pi}{4}+\sin \pi+\sin \frac{5 \pi}{4}\right) \\
& =\frac{\pi}{4}\left(0+\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0-\frac{\sqrt{2}}{2}\right)=\frac{\pi(\sqrt{2}+2)}{8}
\end{aligned}
$$

14. Estimate $\int_{3}^{9} f(x) d x$ with three equal subintervals using
(a) Right endpoints
(b) Left endpoints
(c) Midpoints
where values of $f(x)$ are given in the table below.

x	3	4	5	6	7	8	9
$f(x)$	-3.4	-2.1	-0.6	0.3	0.9	1.4	1.8

Solution: For all parts, $\Delta x=\frac{b-a}{n}=\frac{9-3}{2}=2$. With three subintervals, the endpoints are $x_{0}=$ $3, x_{1}=5, x_{2}=7, x_{3}=9$. Then $\int_{3}^{9} f(x) f(x) d x \approx R_{3}, L_{3}, M_{3}$.

$$
\begin{aligned}
R_{3} & =2\left(f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right)=2(-0.6+0.9+1.8)=4.2 \\
L_{3} & =2\left(f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)\right)=2(-3.4-0.6+0.9)=-6.2 \\
M_{3} & =2\left[f\left(\frac{x_{0}+x_{1}}{2}\right)+f\left(\frac{x_{1}+x_{2}}{2}\right)+f\left(\frac{x_{2}+x_{3}}{2}\right)\right]=2(f(4)+f(6)+f(8)) \\
& =2(-2.1+0.3+1.4)=-0.8
\end{aligned}
$$

15. Evaluate $\int 3 x^{2} e^{-x^{3}} d x$.

Solution: Let $u=-x^{3}$, so $d u=-3 x^{2} d x$ and $-d u=3 x^{2} d x$. Then

$$
\begin{aligned}
\int 3 x^{2} e^{-x^{3}} d x & =-\int e^{u} d u \\
& =-e^{u}+C \\
& =-e^{-x^{3}}+C
\end{aligned}
$$

16. Evaluate $\int_{0}^{\frac{\pi}{4}} \sin x \sin (\cos x) d x$.

Solution: Let $u=\cos x$, so $d u=-\sin x d x$ and $-d u=\sin x d x$. Then our upper and lower limits of integration are $u_{U}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$ and $u_{L}=\cos 0=1$, respectively. Then

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \sin x \sin (\cos x) d x & =-\int_{1}^{\frac{\sqrt{2}}{2}} \sin u d u \\
& =\left.\cos u\right|_{1} ^{\frac{\sqrt{2}}{2}} \\
& =\cos \frac{\sqrt{2}}{2}-\cos 1
\end{aligned}
$$

17. Evaluate $\int_{-31415926}^{31415926} \frac{x^{5} \sin x \tan x|x|}{12+x^{2}+x^{8}} d x$.

Solution: Since $12+x^{2}+x^{8}$ and $|x|$ are even while $x^{5}, \sin x$, and $\tan x$ are odd, our function is an odd function. Therefore,

$$
\int_{-31415926}^{31415926} \frac{x^{5} \sin x \tan x|x|}{12+x^{2}+x^{8}} d x=0
$$

18. Evaluate $\int \frac{\ln x}{x \sqrt{1+(\ln x)^{2}}} d x$.

Solution: Let $u=1+(\ln x)^{2}, d u=\frac{2 \ln x}{x} d x$, and $\frac{1}{2} d u=\frac{\ln x d x}{x}$. Then

$$
\begin{aligned}
\int \frac{\ln x}{x \sqrt{1+(\ln x)^{2}}} d x & =\frac{1}{2} \int \frac{1}{\sqrt{u}} d u \\
& =u^{\frac{1}{2}}+C \\
& =\sqrt{(\ln x)^{2}+1}+C
\end{aligned}
$$

19. Evaluate $\int \frac{3 t^{2}-2}{t^{3}-2 t-8} d t$.

Solution: Let $u=t^{3}-2 t-8$. Then $d u=\left(3 t^{2}-2\right) d t$. Then

$$
\begin{aligned}
\int \frac{3 t^{2}-2}{t^{3}-2 t-8} d t & =\int \frac{d u}{u} \\
& =\ln |u|+C \\
& =\ln \left|t^{3}-2 t-8\right|+C
\end{aligned}
$$

