MTH 251
 Derivatives Review

Damien Adams

Questions

1. Differentiate $y=x^{2} \sin \pi x$
2. Find y^{\prime} if $y=\frac{t^{4}-1}{t^{4}+1}$. Please simplify.
3. Differentiate $y=\frac{e^{\frac{1}{x}}}{x^{2}}$. Please simplify.
4. Find y^{\prime} if $y=3^{x \ln x}$. Please simplify.
5. Find $f^{\prime}(r)$ if $f(r)=\ln (r \ln r)$. Please simplify.
6. Find $\frac{d y}{d x}$ if $y=\log _{5}\left(1+2 x+3 x^{2}\right)$. Please simplify.
7. Differentiate $y=\tan ^{2}(\sin \theta)$. Please simplify.
8. Find $y^{\prime \prime}$ if $x^{6}+y^{6}=1$. Please simplify.
9. Find $\frac{d y}{d x}$ if $\sin x y=x^{2}-y$
10. Find $\frac{d y}{d x}$ if $y+x \cos y=x^{2} y$
11. Differentiate $y=x \sin \left(x^{2}\right)$. Please simplify.
12. Differentiate $f(x)=\cos x \tan \left(x^{2}-1\right)$. Do not simplify.
13. Find $f^{\prime}(t)$ if $f(t)=\arctan (\arcsin \sqrt{t})$. Do not simplify.
14. Find $g^{\prime}(x)$ if $g(x)=x \arctan (4 x)$. Please simplify.
15. If $f(t)=\sqrt{4 t+1}$, find $f^{\prime \prime}(2)$
16. If $g(\theta)=\theta \sin \theta$, find $g^{\prime \prime}\left(\frac{\pi}{6}\right)$
17. Find an equation of the line tangent to the curve $x^{2}+4 x y+y^{2}=13$ at $(2,1)$
18. Find an equation of the line tangent to the curve $y=(2+x) e^{-x}$ at $(0,2)$
19. Find an equation of the line tangent to the curve $y=\sqrt{1+4 \sin x}$ at $(0,1)$
20. A particle moves on a horizontal line so that its position at time t is $s(t)=t^{3}-12 t+3$, where $t \geq 0, s$ is measured in meters, and t is measured in minutes.
(a) What are the units of the position, velocity, and acceleration?
(b) Find the velocity of the particle at time t
(c) Find the acceleration of the particle at time t
(d) Find the velocity of the particle at 3 minutes
(e) When is the particle not moving?
(f) When is the particle moving forward?
(g) What is the position of the particle when the acceleration is 0 ?
21. A bacteria culture contains 200 cells initially and grows at a rate proportional to its size. After half an hour, the population has increased to 360 cells. Suppose that the number of bacteria in the culture after t hours is given by $n(t)=200(3.24)^{t}$.
(a) Find the number of bacteria after 4 hours
(b) What are the units of the derivative?
(c) Find the rate of growth after 4 hours
22. $y^{\prime}=\pi x^{2} \cos \pi x+2 x \sin \pi x$
23. $y^{\prime}=\frac{8 t^{3}}{\left(t^{4}+1\right)^{2}}$
24. $y^{\prime}=-\frac{2 x e^{\frac{1}{x}}+e^{\frac{1}{x}}}{x^{4}}$
25. $y^{\prime}=\ln 3 \cdot 3^{x \ln x}(\ln x+1)$
26. $f^{\prime}(r)=\frac{1}{r}+\frac{1}{r \ln r}$
27. $\frac{d y}{d x}=\frac{6 x+2}{\ln 5\left(1+2 x+3 x^{2}\right)}$
28. $\frac{d y}{d \theta}=2 \tan (\sin \theta) \sec ^{2}(\sin \theta) \cos \theta$
29. $y^{\prime \prime}=-\frac{5 x^{4}}{y^{11}}$
30. $\frac{d y}{d x}=\frac{2 x-y \cos x y}{x \cos x y+1}$
31. $\frac{d y}{d x}=\frac{2 x y-\cos y}{1-x \sin y-x^{2}}$
32. $\frac{d y}{d x}=2 x^{2} \cos \left(x^{2}\right)+\sin \left(x^{2}\right)$
33. $f^{\prime}(x)=-\sin x \tan \left(x^{2}-1\right)+2 x \cos x \sec ^{2}\left(x^{2}-1\right)^{21}$.
34. $f^{\prime}(t)=\frac{1}{1+(\arcsin \sqrt{t})^{2}} \cdot \frac{1}{\sqrt{1-t}} \cdot \frac{1}{2} t^{-\frac{1}{2}}$
35. $g^{\prime}(x)=\frac{4 x}{1+16 x^{2}}+\arctan (4 x)$
36. $-\frac{4}{27}$
37. $\sqrt{3}-\frac{\pi}{12}$
38. $y-1=-\frac{4}{5}(x-2)$
39. $y=-x+2$
40. $y=2 x+1$
41. (a) Meters, $\mathrm{m} / \mathrm{min}, \mathrm{m} / \mathrm{min}^{2}$
(b) $v(t)=3 t^{2}-12$
(c) $a(t)=6 t$
(d) $15 \mathrm{~m} / \mathrm{min}$
(e) At 2 minutes, the particle is at rest
(f) After 2 minutes
(g) 3 meters in the positive direction
(a) About 22040 bacteria
(b) Bacteria per hour
(c) About 25910 bacteria/hr
