12.9 The Jacobian

It is often useful to change variables in an expression to better understand how a quantity works. We have seen this in several circumstances.

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{g(a)}^{g(b)} f(g(u)) g^{\prime}(u) d u \\
\iint_{R} f(x, y) d A & =\iint_{S} f(r \cos \theta, r \sin \theta) r d r d \theta \\
\iiint_{E} f(x, y, z) d V & =\iiint_{W} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \theta d \varphi
\end{aligned}
$$

12.9.1 Transformations

Definition

A transformation T from a set D to another set D^{\prime} is a rule that assigns to each element of D an element of D^{\prime}.

- The set D is called the domain of T.
- The set D^{\prime} is called the codomain of T.
- If $u \in D$, then the corresponding element of the codomain $T(u)$ is called the image of u.
- If E is a subset of D, then the set of all images of the elements of E is called the image of E.
- If no two elements of D have the same image, then T is called a one-to-one transformation.
- If T is a one-to-one transformation from D to D^{\prime} such that $T(\alpha)=\beta$, then the transformation S from D^{\prime} to D such that $S(\beta)=\alpha$ is called the inverse transformation of T, and we notate it $S=T^{-1}$.

Definition

A transformation T from the $u v$-plane to the $x y$-plane by the rule $T(u, v)=(x, y)$, where

$$
x=g(u, v) \quad, \quad y=h(u, v)
$$

is called a C^{1} transformation if g, h have continuous first-order partial derivatives.

Example 1. Let T be a transformation from the $u v$-plane to the $x y$-plane defined by

$$
g(u, v)=u^{3}-v^{3} \quad, \quad h(u, v)=-3 u^{2} v+3 u v^{2}
$$

Determine if T is a C^{1} transformation, then find the image of the square $S=\{(u, v) \mid u \in$ $[0,1], v=[0,1]\}$.

12.9.2 The Jacobian

Definition

Let T be a transformation from the $u v$-plane to the $x y$-plane determined by $x=g(u, v)$ and $y=h(u, v)$. The Jacobian of T is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

Theorem

Suppose that T is a C^{1} transformation from a region S in the $u v$-plane onto a region R in the $x y$-plane such that the Jacobian is nonzero. Further suppose that

- f is continuous on R,
- R and S are type I or II plane regions,
- T is one-to-one except possibly on the boundary of S.

Then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Example 2. Let R be the trapezoidal region with vertices $(1,0),(2,0),(0,-2),(0,-1)$. Evaluate $\iint_{R} e^{\frac{x+y}{x-y}} d A$.

Definition

Let T be a transformation from the $u w v$-space to the $x y z$-space determined by $x=$ $g(u, v, w), y=h(u, v, w)$, and $z=k(u, v, w)$. The Jacobian of T is

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{ccc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

Theorem

Suppose that T is a C^{1} transformation from a region S in the $u v w$-space onto a region R in the $x y z$-space such that the Jacobian is nonzero. Further suppose that

- f is continuous on R,
- R and S are type I, II, or III space regions,
- T is one-to-one except possibly on the boundary of S.

Then

$$
\iiint_{R} f(x, y, z) d V=\iiint_{S} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
$$

Example 3. Use the transformation $x=u^{2}, y=v^{2}$, and $z=w^{2}$ to find the volume of the region bounded by the surface $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ and the coordinate planes.

12.9.3 Rationale for Using the Jacobian to Change Variables in a Double Integral

C^{1} transformations are useful for transforming the region of integration in a double integral. Suppose S is a small rectangle in the $u v$-plane of size $\Delta u \times \Delta v$, and the lower-left corner of S is the point $\left(u_{0}, v_{0}\right)$. Let T be a transformation from the $u v$-plane to the $x y$-plane, and let R be the image of S.

Now, if $\left(u_{0}, v_{0}\right)$ is a corner of R, then the image of this corner is $\left(x_{0}, y_{0}\right)=T\left(u_{0}, v_{0}\right)$. Moreover, if $(u, v) \in R$, then

$$
\mathbf{r}(u, v)=g(u, v) \mathbf{i}+h(u, v) \mathbf{j}
$$

is the position vector for the image of (u, v).
We can use this vector equation to study the boundaries of R. First, the left edge of S is $\left(u_{0}, v\right)$. The corresponding boundary of R is $\mathbf{r}\left(u_{0}, v\right)$. Moreover, the tangent vector to this boundary at $\left(x_{0}, y_{0}\right)$ is

$$
\mathbf{r}_{u}=g_{u}\left(u_{0}, v_{0}\right) \mathbf{i}+h_{u}\left(u_{0}, v_{0}\right) \mathbf{j}=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}
$$

Similarly, the bottom edge of S is $\left(u, v_{0}\right)$, the corresponding boundary of R is $\mathbf{r}\left(u, v_{0}\right)$, and the tangent vector to this boundary at $\left(x_{0}, y_{0}\right)$ is

$$
\mathbf{r}_{v}=g_{v}\left(u_{0}, v_{0}\right) \mathbf{i}+h_{v}\left(u_{0}, v_{0}\right) \mathbf{j}=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}
$$

Similarly to how we did with exploring surface area, we can approximate the image region $R=T(S)$ by a parallelogram determined by $\mathbf{r}\left(u_{0}, v_{0}+\Delta v\right)-\mathbf{r}\left(u_{0}, v_{0}\right)$ and $\mathbf{r}\left(u_{0}+\Delta u, v_{0}\right)-$ $\mathbf{r}\left(u_{0}, v_{0}\right)$.

Now, note that

$$
\mathbf{r}_{u}=\lim _{\Delta u \rightarrow 0} \frac{\mathbf{r}\left(u_{0}+\Delta u, v_{0}\right)-\mathbf{r}\left(u_{0}, v_{0}\right)}{\Delta u}
$$

So $\mathbf{r}\left(u_{0}+\Delta u, v_{0}\right)-\mathbf{r}\left(u_{0}, v_{0}\right) \approx \Delta u \mathbf{r}_{u}$. Similarly $\mathbf{r}\left(u_{0}, v_{0}+\Delta v\right)-\mathbf{r}\left(u_{0}, v_{0}\right) \approx \Delta v \mathbf{r}_{v}$.

It follows that the area of R is approximated by the area of the parallelogram determined by $\Delta u \mathbf{r}_{u}$ and $\Delta v \mathbf{r}_{v}$.

A property of cross products is that $|a \mathbf{u} \times b \mathbf{v}|=|\mathbf{u} \times \mathbf{v}||a||b|$. In particular,

$$
\left|\left(\Delta u \mathbf{r}_{u}\right) \times\left(\Delta v \mathbf{r}_{v}\right)\right|=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \Delta u \Delta v
$$

Computing this cross product, we obtain

$$
\begin{aligned}
\mathbf{r}_{u} \times \mathbf{r}_{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & 0 \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & 0
\end{array}\right| \\
& =\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}
\end{array}\right| \mathbf{k} \\
& =\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \mathbf{k}
\end{aligned}
$$

It follows that the approximate area of R is $\Delta A \approx\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta u \Delta v$, where the Jacobian is evaluated at $\left(u_{0}, v_{0}\right)$.

Now, if we divide any region S in the $u v$-plane into rectangles $S_{i j}$ and call their images in the $x y$-plane $R_{i j}$, then

$$
\begin{aligned}
\iint_{R} f(x, y) d A & \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}, y_{j}\right) \Delta A \\
& \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(g\left(u_{i}, v_{j}\right), h\left(u_{i}, v_{j}\right)\right)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta u \Delta v
\end{aligned}
$$

where we evaluate the Jacobian at $\left(u_{i}, v_{j}\right)$. As $m, n \rightarrow \infty$,

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(g\left(u_{i}, v_{j}\right), h\left(u_{i}, v_{j}\right)\right)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta u \Delta v \rightarrow \iint_{S} f(g(u, v), h(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

