One of the terms of voting membership: Membership in at least one standing subcommittee or task force committee for each quarter of the academic year

Faculty Development Standing Subcommittee
Leader: Gabe Hunter-Bernstein
Duties
- Anticipate college needs for faculty development as it relates to assessment and provide faculty support
- Examples: Assessment course, district wide activities, assessment awareness

Conduit Standing Subcommittee
Leader: Shirlee Geiger
Duties
- Monitor the national and international conversation around assessment and accountability in higher education
- Assist PCC faculty members in their awareness and understanding of, and participation in this conversation

Collaboration Initiative Standing Subcommittee
Leader: Sally Earll
Duties
- Provide support for PCC faculty and SACs to understand assessment results and manage difficult conversations.
- Examples: Critical Friends, PALs

Membership Standing Subcommittee
Leader: Linda Paulson
Duties
- Seek membership to maintain balance of the LAC; create a slate, in consultation with chair of LAC, of new members; and bring the slate for approval by the LAC in Spring
- Send welcome letter in Spring
- Organize retreat for new members in Fall
- Provide membership information in Fall
- Annually review/update normative agreement

Funding Standing Subcommittee
Leader: Michele Marden (per bylaws, this is led by the LAC Chair)
Duties
- Make grant decisions
- Balance money with need
Lost Members: Josette Beach, (Jessica Johnson)

New member: Heather Lang

Potential New Members:

1. Sandie Curren
 SY
 Dental Hygiene Faculty
 FT
 Notes: Josette Beach (director of Dental Hygiene) suggested Sandie Curren. Sandie attended Great Teacher’s Seminar in June 2012.

2. Priscilla Loanzon
 SY
 Nursing Faculty
 FT
 Notes: Phd in education – with assessment background (maybe even focus of phd). She was awarded a LAC assessment grant last year (did a lot of research into the college structure for the project – which we may be able to use to help train faculty about assessment).

3. Sherie Guess
 SY
 Computer Applications Faculty
 FT temp
 Notes: Met at New Faculty Institute. Lots of energy and interest.

4. Julie Romey
 SE
 Computer Applications Faculty
 FT temp
 Notes: Met at New Faculty Institute. Lots of energy and interest.

<table>
<thead>
<tr>
<th>Current</th>
<th>If we approval all</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY Voting</td>
<td>35.3%</td>
</tr>
<tr>
<td>RC Voting</td>
<td>11.8%</td>
</tr>
<tr>
<td>CA Voting</td>
<td>29.4%</td>
</tr>
<tr>
<td>SE Voting</td>
<td>23.5%</td>
</tr>
</tbody>
</table>

| Voting CTE faculty | 33.3% | Voting CTE faculty | 45.5% |
| Voting LDC/DE faculty | 66.7% | Voting LDC/DE faculty | 54.5% |
Homework:
We will be discussing CCOGs at our next meeting. It would be helpful if you did 30 minutes of homework before the meeting.

- Please bring a CCOG from your SAC (or pick a random one if you don't have a SAC).
- Take a moment to evaluate the CCOG by asking the following questions (Note: We probably won't share specific answers to these questions, but they will help inform the boarder discussion):

1. Do the course outcomes represent what you believe the course should entail? If not, why?
2. Are you satisfied with the wording of the course outcomes? If not, why?
3. Are the course outcomes "easily" assessable/measurable? If not, why?
4. Do the course outcomes indicate the student attainment level that is expected for the outcome? If not, do you think they could (or should)?
5. If you are LDC, can you map the course outcomes to the core outcomes? If you are CTE, can you map the course outcomes to the appropriate degree/cert outcomes?
6. Does the section called "Outcome Assessment Strategies" have a detailed description for how students are to be assessed to ensure that the course outcomes are met (ie, more than "quiz/test/project")? If so, is it reasonable and does it speak to the level of student attainment that is expected? If not, can you come up with one detailed assessment activity that would address one of the course outcomes at the expected level of student attainment?
7. Is the CCOG "cohesive"? Meaning: Do the various parts of the CCOG agree and support each other or is there a mismatch (eg, course outcomes that don't relate to the content/skills)? Parts of the CCOG may include the following: Course Description and Pre-reqs, Intended Outcomes, Course Activities and Design, Outcome Assessment, Course Content (Themes, Concepts, Issues) and Skills, Related Instruction, Competencies/Skills, Addenda.
CCOG Discussions
First meeting: Jim/Sally and Michele/Wayne
Second meeting: Jim/Sallly/Anne, Michele/Wayne/Kendra, Susanne
Invitation from Sylvia to talk with EAC Leaders Monday, 11/5

Initial Discussions (Reinvent wheel?), Main points:
1. All course outcomes need assessments on CCOG (more than quiz/test/project)
2. LDC: Map course outcomes to core outcomes; CTE map course outcomes to degree/cert (which are already mapped to core)
3. All course outcomes do not need to map to a degree/core for LDC)/cert outcome
4. Continue mapping matrix as a part of program review (course to degree/cert or course outcomes to degree/cert). However, we will not attempt to connect mapping matrix to assessment strategies now.

Goals for today:
1. **Have an understanding of the following**: Be able to explain and discuss the following with colleagues:
 a. National Waters:
 i. Assessment gurus are promoting direct measurable outcomes. Dislike of words “appreciate and understand” and core outcomes like “critical thinking.” Most appear to want competency-based system where students meet agreed upon standards for knowledge/skills (some want to remove grades).
 ii. Credit for prior learning / Harvard-MIT-Coursera-Udacity / Free online course badges; How will PCC evolve?
 iii. Troublesome Standard with Northwest: 4.A.3 The institution documents, through an effective, regular, and comprehensive system of assessment of student achievement, that students achieve identified course, program, and degree learning outcomes. Faculty with teaching responsibilities are responsible for evaluating student achievement of clearly identified learning outcomes.
 b. Historical perspective of PCC’s Course Outcome development
 i. Ruth Stiehl
 ii. Term “competency” – especially for CTE
 iii. Roll-out: Started asking about course outcome field on CCOG, but didn’t deny course, had workshop for SACs to have courses “pre-approved”
 iv. Purple sheet
 c. Intention for progression (assessment)
 d. **Possible** process for how to roll this out (2400 courses)
 i. 3-5 year plan
 ii. LAC gives suggestions to Curriculum for how to build upon on Ruth Stiehl model (keep what has been valuable from Ruth Stiehl model but look toward having more “directly measurable.”)
 iii. LAC develops criteria CCOG assessment block and discusses with Curriculum
 iv. Curriculum starts asking about assessment field on CCOG, but does not deny course
 v. Workshops for SACs to have courses pre-approved – LAC supports
2. **So, now what?**
 a. Yes / No / Unsure
 b. Task Force?
 i. Pros/cons of Ruth Stiehl and how to build upon it
 ii. Good assessment
 c. Concerns?
Troublesome standard with Northwest:

4.A.3 The institution documents, through an effective, regular, and comprehensive system of assessment of student achievement, that students who complete its educational courses, programs, and degrees, wherever offered and however delivered, achieve identified course, program, and degree learning outcomes. Faculty with teaching responsibilities are responsible for evaluating student achievement of clearly identified learning outcomes.

Ruth Stiehl's Model:
Italicized font from PCC’s website: From http://www.pcc.edu/resources/academic/ccog/ccog-help.html#13

- "Out there" perspective.

Outcomes are clear statements of what the students will be able to do outside the classroom with what they have learned. The statements should be clear enough to be understood by anyone who has an interest in the course. They must also be complex enough to provide direction for the whole course.

The key to writing good outcome statements is to really be able to visualize and describe out students living and working in “the rest of life” situations. The outcome statement describes our hope for them and their ability to apply what they have learned.

- Do not use words that represent “in here” activities.

When writing good outcomes AVOID the use of - demonstrate, discuss, identify. These relate to classroom outcomes. A common tendency is to view skills and outcomes as interchangeable. Outcomes really speak to more to the value of the combination of skills (along with theoretical content) that contributes to the more complex outcomes for the course. See Skills for a further discussion of this distinction.

Skills:
The best way to distinguish skills is simply to ask yourself what the student must be able to do that requires a routine of practice and feedback. The key here is that it must be a process they can master.

- Note: “Understand” and “appreciate” may be ok for Ruth Stiehl model?
BIT 107; Basic Lab Tech and Instruments

Course Description

Introduces fundamental principles and practices for the bioscience laboratory. Principles of quality documentation, safety, and precise communication will be emphasized throughout, in the context of technical activities that include solution preparation, instrumentation for measurements (weight, volume, temperature, pH, conductivity and spectroscopy), assay techniques and routine laboratory maintenance. Recommend prior or concurrent college level course in Chemistry, or BI 112 or 211, and MTH 65. Prerequisite: Placement into WR 115 and RD 115. Prerequisite or concurrent enrollment in: BIT 105 and BIT 107.

Intended Outcomes for the course

- Work in the bioscience laboratory environment, applying principles of safety, quality and teamwork.
- Carry out common laboratory measurements (weight, volume, temperature, pH and light) demonstrating understanding of the limits of detection, principles of calibration, and limits in the precision and accuracy of the instrumentation used.
- Perform calculations needed to prepare solutions, make dilutions, maintain records and evaluate data in bioscience laboratory environment.
- Use an understanding of microbiological principles and properties to work effectively in a standard laboratory experiments.
- Communicate clearly and succinctly the purpose, procedures, results and interpretation of data collected from measuring/monitoring equipment and from laboratory experiments.

Outcome Assessment Strategies

LEARNING ASSESSMENT TASKS: [Tasks are VERY specific – more than “quiz/test/hw”]

A. Prepare buffers and other solutions commonly used in the laboratory. Critical elements include: calculations, documentation of reagents and instrument used, pH determination (if appropriate), proper labeling of the solution, care of equipment and reagents.
B. Measure small liquid volumes (uL range) using micro pipettes, documenting accuracy and precision. Critical elements include: calculation and documentation of procedure and results, calculation of accuracy (% error) and precision (CoV), demonstration of skillful use of the micro pipette.
C. Determine the concentration of known substances using both direct absorbance and indirect spectrophotometric assay. Critical elements include preparation of appropriate standard curve, accurate determination of solute concentration in unknown sample; understanding of limitations of assay system; documentation of procedures, data and interpretations; care of equipment and laboratory environment.
D. Maintain accurate and real time records of ongoing laboratory work. Critical elements include: complete and accurate documentation of materials, calculation, procedures and instruments; sensible presentation of data; rationale and interpretation included where appropriate; standard practices for entries, annotations, attachments, corrections and continuing projects followed.
E. Carry out an unfamiliar procedure (such as small scale plasmid purification) from an established protocol, maintain records in the laboratory notebook that can be followed by anyone "skilled in the art"