Course Content and Outcome Guide for G 207

Course Number:
G 207
Course Title:
Geology of the Pacific N.W.
Credit Hours:
Lecture Hours:
Lecture/Lab Hours:
Lab Hours:
Special Fee:

Course Description

Introduces the regional geology of the Pacific Northwest with emphasis on Oregon geology. Includes basic geologic principles, earth materials and geology of Pacific Northwest provinces. Prior geology experience strongly recommended. Prerequisite: WR 115, RD 115 and MTH 65 or equivalent placement test scores. Audit available.

Addendum to Course Description

Geology of the Pacific Northwest (G207) is a one-term introductory course in geology. The purpose of this course is to acquaint the student with basic geologic principles and the general geology of the Pacific Northwest. The emphasis is on the geology of Oregon and Washington. This course can be used to partly fulfill graduation requirements for the Associate Degree, and has been approved for block transfer. The text and materials have been chosen by the faculty and the emphasis of the course will be the viewpoint of the author(s). This includes the geologic time scale and the evolution of the Earth.

Regarding the teaching of basic geologic principles (such as geologic time and the theory of evolution), the Portland Community College Geology Department stands by the following statements about what is science.

  1. Science is a fundamentally non-dogmatic and self-correcting investigatory process. A scientific theory is neither a guess, dogma, nor myth. The theories developed through scientific investigation are not decided in advance, but can be and often are modified and revised through observation and experimentation.
  2. €œCreation science,€ also known as scientific creationism, is not considered a legitimate science, but a form of religious advocacy. This position is established by legal precedence (Webster v. New Lenox School District #122, 917 F.2d 1004).
  3. Geology instructors at Portland Community College will teach the generally accepted basic geologic principles (such as geologic time and the theory of evolution) not as absolute truth, but as the most widely accepted explanation for our observations of the world around us. Instructors will not teach that €œcreation science€ is anything other than pseudoscience.
  4. Because "creation science", "scientific creationism", and "intelligent design" are essentially religious doctrines that are at odds with open scientific inquiry, the Geology/General Sciences SAC at Portland Community College stands with such organizations such as the National Association of Geoscience Teachers, the American Geophysical Union, the Geological Society of America, and the American Geological Institute in excluding these doctrines from our science curriculum.

Students are expected to be able to read and comprehend college-level science texts and perform basic mathematical operations in order to successfully complete this course.

Intended Outcomes for the course

A student who successfully completes this course should be able to:
1. Use an understanding of earth materials and landforms to infer the surficial and internal processes which formed the landscape and underlying geology of the physiographic provinces of the Pacific Northwest.
2. Use an understanding of plate tectonics and surficial processes to unravel the sequence of geologic events which have acted over time to
create the physiographic provinces of the Pacific Northwest from diverse geologic terranes.
3. Access earth science information about the Pacific Northwest from a variety of sources, evaluate the quality of this information, and compare this
information with current models of the formation and development of the physiographic provinces of the Pacific Northwest identifying areas of congruence and discrepancy.
4. Make field  and laboratory based observations and measurements of earth materials and landforms, use scientific reasoning to interpret these observations and
measurements, and compare the results with current models of geological processes affecting the Pacific Northwest identifying areas of congruence and discrepancy.
5. Use scientifically valid modes of inquiry, individually and collaboratively, to critically evaluate the hazards and risks posed by the geological processes
which are still shaping the Pacific Northwest both to themselves and society as a whole, evaluate the efficacy of possible ethically robust responses to
these risks, and effectively communicate the results of this analysis to their peers.
6. Assess the contributions of physical and historical geology to our evolving understanding of global change and sustainability while placing the development of the geology of the Pacific Northwest in its historical and cultural context.

Course Activities and Design

The material in this course will be presented in a lecture/discussion format Other educationally sound methods may be employed such as guest lectures, field trips, research papers, and small group work.

Outcome Assessment Strategies

At the beginning of the course, the instructor will detail the methods used to evaluate student progress and the criteria for assigning a course grade. The methods may include one or more of the following tools: examinations, quizzes, homework assignments, research papers, small group problem solving of questions arising from application of course concepts and concerns to actual experience, oral presentations, or maintenance of a personal work journal.

Course Content (Themes, Concepts, Issues and Skills)

  1. Locate the physiographic provinces of the Pacific Northwest on a map
  2. Explore the rock types and geologic features of each of the physiographic provinces of the Pacific Northwest
  3. Identify and describe the major features of the Earth's surface and interior
  4. Describe the major types of materials that make up the Earth's crust and explain how each material relates to the rock cycle
  5. Describe the geologic processes and features that occur at plate boundaries
  6. Describe the impact of surficial processes on landscapes and geologic materials
  7. Identify the role of volcanism and faulting in the development of the High Lava Plains and the Basin and Range Provinces
  8. Describe the roles of flood-type volcanism, catastrophic flooding, and glaciation in the development of the Columbia Plateau
  9. Compare the geologic histories of the Western Cascades, High Cascades, and North Cascades provinces
  10. Discuss the formation of the Puget Sound and Willamette Valley
  11. Describe the role of accretion and crustal deformation in the development of the Klamath Mountains and Blue Mountains
  12. Describe the role of subduction in the development of the Coastal ranges and the Cascades
  13. List the major divisions of the standard geologic time scale

Topics to be covered include:


  1. Physiographic Provinces
    1. Landscape, climate, and vegetation of the PacificNorthwest
    2. Physiographic provinces of the Pacific Northwest
  2. Earth€™s Surface Composition and Structure
    1. Regolith vs. bedrock, sources of regolith, variations in depth of regolith
    2. The three rock types; common examples, processes of formation
    3. Occurrence of rocks, cover vs. basement, horizontal vs. folded and faulted strata, types of intrusions, structure of mountain ranges, geologic maps
    4. Rock cycle; internal process vs. surficial processes, energy sources for internal and surficial processes.
    5. Continental crust vs. oceanic crust; differences in composition and thickness
  3. Historical Geology
    1. Principles of relative and absolute dating
    2. Fossils, faunal succession, stratigraphic correlation
    3. Past environments; sedimentary evidence for past geographies and climates
    4. Geologic time scale
  4. Plate Tectonics
    1. Basic idea of plate tectonics, evidence for plate motion, difference between continental and oceanic crust, internal structure of the earth, heat loss
    2. Creation and destruction of oceanic crust at ridges and trenches, age of oceanic crust
    3. Geologic activity and structure at each type of plate boundary (transform, convergent, divergent), cause of earthquakes, volcanism and topography at plate boundaries
    4. Hot spots, hot spot tracks, oceanic vs. continental hot spots, causes of hot spots
  5. Coastal Provinces; Coast Ranges and Olympic Mountains
    1. Major topographic features, drainages, rock units and geologic structures
    2. Paleogrography of Tertiary coast
    3. Coastal processes, evidence for uplift
    4. Modern tectonic setting, accretion, evidence for prehistoric subduction zone earthquakes
  6. Lowland Provinces; Puget Sound and Willamette Valley
    1. Major topographic features, drainages, rock units and geologic structures
    2. Glaciation and ice age floods
  7. The Volcanic Arc: Cascade Mountains Province
    1. Major topographic features, drainages, rock units and geologic structures
    2. Subduction zone volcanism
    3. Tertiary plate tectonic setting of the Pacific Northwest
    4. Old cascades vs. young cascades, uplift of Cascade Mountains
    5. Volcanic hazards
  8. Extension and Hot Spots: Basin and Range, Columbia River Plateau and High Lava Plain
    1. Major topographic features, drainages, rock units and geologic structures
    2. Timing of basin and range extension, formation of fault block mountains
    3. Flood basalt volcanism, vs. silicic volcanism
    4. Hot Spot volcanism
  9. Accreted Terranes: Kalamath Mountains, Blue Mountains and North Cascades
    1. Major topographic features, drainages, rock units and geologic structures
    2. Accreation of exotic terranes, stacking of terranes, stitching by plutons
    3. Mesozoic plate tectonic setting of the Pacific Northwest
  10. Edge of the Craton: Okanagan Highland and Rocky Mountains
    1. Major topographic features, drainages, rock units and geologic structures
    2. Cratonic sediments, fold and thrust belts
    3. Paleozoic plate tectonic setting of the Pacific Northwest